This section sets out common details for Steadmans AS35 roof panels.

All the details here are available in CAD format from the Steadmans web site - click on the link at the bottom of each page to go the downloads section.

Key to figures 05 & 06

- **a** AS35 insulated roof panel
- **b** AS35 insulated wall panel
- **c** Profiled foam filler sealed with gun grade mastic
- **d** Air seal - 8mm Butyl rubber
- **e** Seal - 6 x 5mm Butyl rubber
- **f** Gutter support arm @ 1000mm max. centres stitched to roof panel @ max 200mm centres
- **g** Site applied fire rated canister insulation
- **h** Plastisol external eaves gutter
- **i** Eaves beam
- **j** Eaves flashing
- **k** PIR insulation board
- **l** Insulated gutter

Notes

- Factory formed insulated gutter, PIR board insulation gives U-values of 0.25 or 0.35 W/m²K
Figure 07

Crimped curved eaves

Figure 08

Crimped curved ridge

Key to figures 07 & 08

- **a** AS35 insulated roof panel
- **b** AS35 insulated wall panel
- **c** Profiled foam filler sealed with gun grade mastic
- **d** Air seal - 8mm Butyl rubber
- **e** Seal - 6 x 5mm Butyl rubber
- **f** Curved single skin eaves sheet
- **g** Rockwool insulation to achieve required U-value
- **h** Galvanised support for liner sheet
- **i** Side rail
- **j** 0.7mm site curved flat sheet, min 75mm sealed lap joints
- **k** Closure flashing
- **l** Insulated gutter

Notes

- Factory formed insulated gutter, PIR board insulation gives U-values of 0.25 or 0.35W/m²K
- Minimum outside radius of curved eaves sheet = 500mm
Key to figures 09 & 10

a AS35 insulated roof panel
b Ridge flashing with min 150mm sealed lap joints
c Profiled foam filler sealed with gun grade mastic
d Air seal - 8mm Butyl rubber
e Seal - 6 x 5mm Butyl rubber
f Site applied fire rated canister insulation
g Internal liner flashing with min 75mm sealed lap joints
h Cranked single skin ridge sheet
i PIR insulation board with site applied fire rated canister insulation
j Internal flashing with min 75mm sealed lap joints
Key to figures 11 & 12

- **a** AS35 insulated roof panel
- **b** AS35 insulated wall panel
- **c** Profiled foam filler sealed with gun grade mastic
- **d** Air seal - 8mm Butyl rubber
- **e** Seal - 6 x 5mm Butyl rubber
- **f** Site applied fire rated canister insulation
- **g** Internal liner flashing with min. 75mm sealed lap joints
- **h** Cleader rail
- **i** Verge flashing
- **j** Site applied expandable seal
- **k** Wall strap (if required)

Notes:
- Designers must ensure that walls have an appropriate thermal performance

Figure 11
Verge to wall panels

Figure 12
Verge to brick wall
Key to figures 13 & 14

- a AS35 insulated roof panel
- b Flashing chased into brickwork, sealed with 6 x 5mm Butyl rubber
- c Profiled foam filler sealed with gun grade mastic
- d Air seal - 8mm Butyl rubber
- e Support zed sealed top and bottom with 6 x 5mm Butyl rubber seal
- f Apron flashing sealed with 6 x 5mm Butyl rubber seal
- g Internal liner flashing sealed to wall with expandable seal
- h Site applied fire rated canister insulation
- i Wall strap (if required)
- j Hip flashing with min. 150mm sealed lap joints or butt straps
- k Internal liner flashing with min. 75mm sealed lap joints
- l Cleader rail
- m Hip rafter

Notes

- Designers must ensure that walls have an appropriate thermal performance
- Panels and profiled foam filler skew-cut to suit hip rake angle
- Cleader rail by steel sub-contractor

Figure 13
Abutment

Figure 14
Hip ridge
Figure 15
Eaves valley

Figure 16
Hip valley

Key to figures 15 & 16

- **a** AS35 insulated roof panel
- **b** Double sided plastisol flashing (optional)
- **c** Insulated gutter
- **d** Air seal - 8mm Butyl rubber
- **e** Seal - 50 x 6mm Butyl rubber
- **f** Gutter outlet
- **g** Eaves beam
- **h** Purlin
- **i** Cleader rail
- **j** Hip rafter

Notes

- Factory formed insulated gutter, PIR board insulation gives U-values of 0.25 or 0.35W/m²K
- Edge protection lacquer can be applied to panels cut on site to suit rake angle
- Gutter outlet offset to miss eaves beam
- Cleader rail by steel sub-contractor
Figure 17
Boundary wall secret gutter

Figure 18
Parapet with secret gutter

Key to figures 17 & 18

- **a** AS35 insulated roof panel
- **b** AS35 insulated wall panel
- **c** Profiled foam filler sealed with gun grade mastic
- **d** Air seal - 8mm Butyl rubber
- **e** PIR insulation board sealed with site applied fire rated canister insulation
- **f** Site applied fire rated canister insulation
- **g** Insulated gutter
- **h** Cap flashing
- **i** Metal flashing set into brickwork, sealed with gun grade silicone mastic
- **j** Gutter sealed to wall with 8mm Butyl rubber seal

Notes

- Factory formed insulated gutter; PIR board insulation gives U-values of 0.25 or 0.35W/m²K
- Designers must ensure that walls have an appropriate thermal performance
Key to figure 19

- **a**: AS35 insulated roof panel
- **b**: AS35 insulated wall panel
- **c**: Profiled foam filler sealed with gun grade mastic
- **d**: Air seal - 8mm Butyl rubber
- **e**: Site applied fire rated canister insulation
- **f**: PIR insulation board sealed with site applied fire rated canister insulation
- **g**: Cap flashing
- **h**: Apron flashing with min. 150mm sealed lap joints
- **i**: Support zed sealed top and bottom with 6 x 5mm Butyl rubber seal
- **j**: Purlin
- **k**: Internal liner flashing with min. 75mm sealed lap joints

Figure 19
Abutment to parapet
Figure 20
Mono ridge to brickwork

Figure 21
Mono ridge to wall panel

Figure 22
Lean-to roof

Key to figures 20, 21 & 22

- **a** AS35 insulated roof panel
- **b** AS35 insulated wall panel
- **c** Profiled foam filler sealed with gun grade mastic
- **d** Site applied expandable seal
- **e** Site applied fire rated canister insulation
- **f** Mono ridge flashing with min. 150mm sealed lap joints
- **g** Rafter built into wall
- **h** Metal flashing chased into masonry, sealed with gun grade mastic
- **i** Apron flashing with min. 150mm sealed lap joints
- **j** Purlin

Notes
- Designers must ensure that walls have an appropriate thermal performance
Key to figures 23 & 24

a AS35 insulated roof panel
b AS35 insulated wall panel
c Profiled foam filler sealed with gun grade mastic
d Air seal - 8mm Butyl rubber
e Apron flashing with min. 150mm sealed lap joints
f Expanding foam sealant
g Site applied mineral fibre insulation
h External flashing with min. 150mm sealed lap joints
i Internal liner flashing with min. 75mm sealed lap joints
j Purlin on extended cleats (if req.)
k Purlin
l Side rail

Figure 23
Lean-to roof to wall panel

Figure 24
Change in roof slope
Key to figure 25

- **a**: AS35 insulated roof panel
- **b**: AS35 insulated wall panel
- **c**: Profiled foam filler sealed with gun grade mastic
- **d**: Air seal - 8mm Butyl rubber
- **e**: Site applied fire rated canister insulation
- **f**: PIR insulation board with site applied fire rated canister insulation
- **g**: Cap flashing with min. 150mm sealed lap joint
- **h**: Apron flashing with min. 150mm sealed lap joints
- **i**: Support zed sealed top and bottom with 6 x 5mm Butyl rubber seal
- **j**: Drip flashing
- **k**: Soffit flashing sealed with site applied fire rated canister insulation
- **l**: Corner flashing
- **m**: Internal liner flashing with min. 75mm sealed lap joints

Figure 25
Mansard - gable start of run

Figure 25
Mansard - gable end of run
Figure 26
Mansard - side wall

Key to figure 26

- **a**: AS35 insulated roof panel
- **b**: AS35 insulated wall panel
- **c**: Profiled foam filler sealed with gun grade mastic
- **d**: Air seal - 8mm Butyl rubber
- **e**: Site applied fire rated canister insulation
- **f**: PIR insulation board sealed with site applied fire rated canister insulation
- **g**: Cap flashing with min. 150mm sealed lap joint
- **h**: Insulated gutter
- **i**: Drip flashing
- **j**: Soffit flashing
- **k**: Corner flashing
- **l**: Internal liner flashing with min. 75mm sealed lap joints

Notes
- Factory formed insulated gutter, PIR board insulation gives U-values of 0.25 or 0.35W/m²K